normaliser$544718$ - перевод на голландский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

normaliser$544718$ - перевод на голландский

SUBGROUP OF A GROUP G THAT EACH LEAVES INVARIANT EACH ELEMENT OF A GIVEN SUBSET OF A G-SET
Normalizer; Centralizer; Commutant; Self-normalizing subgroup; Centraliser; Normaliser; Self-normalizing; Self-normalising; Centralizer & normalizer; N/C theorem; Centralizer (ring theory); C closed subgroup; C-closed subgroup; C-closed subgroups; Centralizer (Lie algebra); Normalizer (group theory)

normaliser      
n. iem. die iets in overeenstemming brengt met een norm

Википедия

Centralizer and normalizer

In mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set C G ( S ) {\displaystyle \operatorname {C} _{G}(S)} of elements of G that commute with every element of S, or equivalently, such that conjugation by g {\displaystyle g} leaves each element of S fixed. The normalizer of S in G is the set of elements N G ( S ) {\displaystyle \mathrm {N} _{G}(S)} of G that satisfy the weaker condition of leaving the set S G {\displaystyle S\subseteq G} fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.

Suitably formulated, the definitions also apply to semigroups.

In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring R is a subring of R. This article also deals with centralizers and normalizers in a Lie algebra.

The idealizer in a semigroup or ring is another construction that is in the same vein as the centralizer and normalizer.